# Polynomials and Polytopes Valentina Kiritchenko* 

*Faculty of Mathematics and Laboratory of Algebraic Geometry and its applications, HSE University
and

Kharkevich Institute for Information Transmission Problems RAS
Sirius, April 24, 2023

Livicgiy

 هـر " . الـيكّنْ

各



id
A manuscript of Omar Khayyam

## Solving cubic equations via conics

Omar Khayyam constructed roots of a cubic equation by intersecting a circle with a hyperbola.

L

 هـر
 -


各


 2
,



id
A manuscript of Omar Khayyam

## Solving cubic equations via conics

## Omar Khayyam constructed roots of a cubic equation by intersecting a circle with a hyperbola.

Warning: this is not a solution by radicals.

L

 i ,


为
Y لا
id
A manuscript of Omar Khayyam

## Solving cubic equations via conics

Omar Khayyam constructed roots of a cubic equation by intersecting a circle with a hyperbola.
Warning: this is not a solution by radicals. Question: is it possible to construct the roots of a cubic equation by straightedge and compass?

## Solving cubic equations via conics

Modern account of Khayyam's construction by Deborah A. Kent and David J. Muraki (in geometric terms, no algebraic notation).

Problem: Given three quantities
$1, \quad \square$,



## Solving cubic equations via conics

3) Draw the rectangular hyperbola through the point $\circ$ with


The horizontal line _ from the other intersection o of the hyperbola with the semi-circle to the asymptote gives the desired segment.

## Solving quartic equations via pencils of conics

Pencil spanned by parabola $y=x^{2}$ and parabola $6 x=y^{2}-7 y$.

Picture from paper "Solving the Quartic with a Pencil" by Dave Aukley


## Solving quartic equations via pencils of conics

Pencil spanned by parabola $y=x^{2}$ and parabola $6 x=y^{2}-7 y$.

The conic labelled by $\lambda$ is given by equation:

$$
6 x-y^{2}+7 y+\lambda\left(y-x^{2}\right)=0
$$

Picture from paper "Solving the Quartic with a Pencil" by Dave Aukley


## Solving quartic equations via pencils of conics

Pencil spanned by parabola $y=x^{2}$ and parabola $6 x=y^{2}-7 y$.

The conic labelled by $\lambda$ is given by equation:

$$
6 x-y^{2}+7 y+\lambda\left(y-x^{2}\right)=0
$$

There are 3 degenerate conics (=pairs of lines) in the pencil. They can be found by solving a cubic equation.


## Newton polygons

Question: how to define the degree of a polynomial in two variables?

Example: $f(x, y)=2 x y+x^{2} y+3 x^{4} y+5 x^{2} y^{2}+x y^{3}$

## Newton polygons

Question: how to define the degree of a polynomial in two variables?

Example: $f(x, y)=2 x y+x^{2} y+3 x^{4} y+5 x^{2} y^{2}+x y^{3}$

## Why bother?

## Newton polygons

Question: how to define the degree of a polynomial in two variables?
Example: $f(x, y)=2 x y+x^{2} y+3 x^{4} y+5 x^{2} y^{2}+x y^{3}$

## Why bother?

Motivation: generalize the Fundamental Theorem of Algebra to two (3, $4, \ldots, n$ ) variables.

## Newton polygons



The support (red points) and the Newton polygon (blue surface) of the polynomial $2 x y+x^{2} y+3 x^{4} y+5 x^{2} y^{2}+x y^{3}$.

## Minding theorem (special case)

Let $f(x, y)$ and $g(x, y)$ be polynomials with the same Newton polygon $P$. Then the system of two equations in two unknowns

$$
f^{\prime}(x, y)=g(x, y)=0
$$

has at most 2area(P) totally nonzero solutions (whenever the number of solutions is finite).

## Minding theorem (special case)

Let $f(x, y)$ and $g(x, y)$ be polynomials with the same Newton polygon $P$. Then the system of two equations in two unknowns

$$
f^{\prime}(x, y)=g(x, y)=0
$$

has at most 2area(P) totally nonzero solutions (whenever the number of solutions is finite).
Example:

$$
\begin{aligned}
& f(x, y)=a x y+b x+c y+d \\
& g(x, y)=a^{\prime} x y+b x^{\prime}+c^{\prime} y+d^{\prime}
\end{aligned}
$$

[^0]
# Minding theorem (general case) 

Question: what if $f(x, y)$ and $g(x, y)$ have different Newton polygons $P$ and $Q$ ?


## Minding theorem (general case)

Question: what if $f(x, y)$ and $g(x, y)$ have different Newton polygons $P$ and $Q$ ?

Answer: use Minkowski sum of polygons.


## Minding theorem (general case)

Let $f(x, y)$ and $g(x, y)$ be polynomials with the Newton polygons $P$ and $Q$. Then the system of two equations in two unknowns

$$
f(x, y)=g(x, y)=0
$$

has at most $[\operatorname{area}(P+Q)$-area $(P)$-area( $Q$ )] totally nonzero solutions (whenever the number of solutions is finite).

## Minding theorem (general case)

Let $f(x, y)$ and $g(x, y)$ be polynomials with the Newton polygons $P$ and $Q$. Then the system of two equations in two unknowns

$$
f^{\prime}(x, y)=g(x, y)=0
$$

has at most $[\operatorname{area}(P+Q)$-area(P)-area( $Q$ )] totally nonzero solutions (whenever the number of solutions is finite).
Example: the system

$$
\begin{aligned}
& f(x, y)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \\
& g(x, y)=a_{m} y^{m}+\cdots+b_{1} y+b_{0}
\end{aligned}
$$

has $m n$ solutions.

## Generalizations

Theorems:

- Bernstein-Kushnirenko-Khovanskii theorems (1970s)
- Brion-Kazarnovskii formula (1980s)

Areas of mathematics:

- toric geometry and theory of Newton polytopes
- canonical bases in representation theory
- theory of Newton-Okounkov convex bodies and toric degenerations
- Schubert calculus


## Mathematics Genealogy Project

## Askold Georgievich Khovanskii

 MathSciNetPh.D. Steklov Institute of Mathematics 1973


Dissertation: Representability of Function in Quadratures
Advisor: Vladimir Igorevich Arnold
Students:
Click here to see the students listed in chronological order.

| Name | School | Year Descendants |  |
| :---: | :---: | :---: | :---: |
| Borodich, Feodor | Lomonosov Moscow State University | 1984 |  |
| Burda, Yuri | University of Toronto | 2012 |  |
| Chulkov, Sergey, | Stockholm University | 2005 |  |
| Firsova, Tanya | University of Toronto | 2010 |  |
| Gelfond, Olga | Lomonosov Moscow State University | 1984 |  |
| Izadi, Farzali | University of Toronto | 2001 | 6 |
| Kaveh, Kiumars | University of Toronto | 2002 | 3 |
| Kiritchenko, Valentina | University of Toronto | 2004 |  |
| Mazin, Mikhail | University of Toronto | 2010 |  |
| Monin, Leonid | University of Toronto | 2019 |  |
| Soprunov, Ivan | University of Toronto | 2002 |  |
| Soprunova, Jenya | University of Toronto | 2002 |  |
| Timorin, Vladlen | Steklov Institute of Mathematics | 2003 | 1 |
| Timorin, Vladlen | University of Toronto | 2004 | 1 |

## Family history

## Annals of Mathematics 176 (2012), 925-978

 http://dx.doi.org/10.4007/annals.2012.176.2.5Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory

By Kiumars Kaveh and A. G. Khovanskii
To the memory of Vladimir Igorevich Arnold

## Thank you for your attention!

Slides and references can be found on the webpage:
me.hse.ru/valkir


[^0]:    Two hyperbolas with parallel asymptotes intersect at two points.

